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Abstract: We introduce new statistical methods for the study of cosmic voids, focusing

on the statistics of largest size voids. We distinguish three different types of distributions

of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two

distributions are connected with two types of fractal geometry of the matter distribution.

Scaling voids with Pareto distribution appear in fractal distributions with box-counting

dimension smaller than three (its maximum value), whereas the lognormal void distribution

corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of

the former type persist in the continuum limit, namely, as the number density of observable

objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in

the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar

and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-

lacunar multifractal model is supported by current galaxy surveys as well as cosmological

N -body simulations. This model suggests, in particular, that small dark matter halos and,

arguably, faint galaxies are present in cosmic voids.
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1. Introduction

The large scale structure of the Universe is formed by matter clusters, filaments and sheets,

and also cosmic voids. Cosmic voids are the counterpart of matter structures. They have

arisen in observations of the galaxy distribution and have gradually become the subject of

deep theoretical investigations. Early studies of cosmic voids were conditioned by the small

number of galaxies surveyed then. For example, Otto et al. [1] studied the significance of

cosmic voids, to distinguish them from fluctuations of a homogeneous galaxy distribution.

They developed probabilistic methods for the study of voids but they actually concluded

that cosmic voids were not really significant. Betancort-Rijo [2] improved and generalized

their methods and reached the opposite conclusion. The rôle of voids as a basic ingredient

of the large scale structure is now well established [3, 4, 5].

However, the definition of what constitutes a void is still imprecise. Originally, voids

were described as large regions devoid of galaxies and found by visual inspection. As this is

hardly satisfactory, an objective way of identifying voids has been long sought. To identify

a void in a point distribution, one needs to decide if it is to be empty or it can have a few

points inside and one further needs to determine its shape. The simplest option, preferred

by Otto et al. [1] and Einasto et al. [3], is to define voids as empty spheres. Kauffmann

and Fairall [4] also demand that voids be empty but devise a void-finder that allows more

general shapes, with the intention to find approximately ellipsoidal voids. ElAd and Piran

[5] devise an even more elaborate method: they assume that there is a set of highly clustered

“wall galaxies” and implement a procedure to select them before the void-finding phase,

which joins empty spheres with a “thinness” limitation. Therefore, the found voids are not

empty of galaxies and can have fairly complex shapes.

The preceding definitions of voids ignore that galaxy voids can contain dark matter.

Although there is no substantial observational knowledge of the geometry of voids in the

dark matter distribution, we have information from cosmological N -body simulations. For

example, Gottlöber et al [6] re-simulate voids with higher resolution and find structures

inside them, in a self-similar pattern. This suggests that the definition of voids as empty

regions of simple shape is not appropriate in this case. Shandarin, Sheth & Sahni [7] and

Sheth & van de Weygaert [8] define voids as under-dense regions of a continuous density

field, such that they are complementary to matter clusters. With this definition, voids

contain matter and have very complex shapes. Shandarin et al. [7] and Sheth & van de

Weygaert [8] extend methods that have been used successfully for the study of clusters

to the study of voids. In fact, under-densities and over-densities are symmetrical in a

Gaussian random field.

Colberg et al [9] have presented an overview of various void definitions and have made

a comparison of the results of applying the corresponding void finding algorithms to the

same data set.

The choice of a simple definition of voids, in particular, their definition as empty

spheres, is convenient for statistical studies of galaxy voids. On the other hand, the ge-

ometrical aspects of dark-matter voids that arise in cosmological simulations are difficult

to relate to the statistics of spherical voids. The definition of dark-matter voids as under-
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densities in a Gaussian field is appealing but difficult to connect with any notion of empty

voids. In fact, a Gaussian density field is a valid description only in the linear regime of

gravitational clustering, but empty or nearly empty voids are very nonlinear structures.

Therefore, a suitable description of the geometry of voids demands the use of nonlinear

models of the cosmic structure. We focus on fractal models, for they are well founded and

provide a useful description of voids.

Fractal models of the large-scale structure of the Universe were introduced by Man-

delbrot [10] and have been well studied [11, 12, 13], but they are still controversial [12].

The major controversy concerns the transition to homogeneity. Mandelbrot [10], inspired

by old hierarchical models of the Universe without transition to homogeneity, has indeed

suggested that there might not be an outer cutoff to the fractal scaling range. Assuming

that there is a scale of homogeneity, scale invariance is nevertheless justified on smaller

scales by observational and theoretical arguments. The observation of a power-law two-

point correlation function of galaxies in a range of scales [14] was one of Mandelbrot’s

motivations and is still a strong argument. Furthermore, there are evidences of scaling in

higher order correlation functions [12].

Theoretical arguments for scale invariance are based on the absence of scales in the

gravitational dynamics of collision-less cold dark matter (CDM). This nonlinear dynamics

indeed gives rise to a hierarchical formation of structures on every scale up to the homo-

geneity scale, which grows with time. Thus, we can reasonably expect that the resulting

structure consists in a (multi)fractal attractor of the nonlinear dynamics. Structure for-

mation in CDM models is studied with N -body simulations, which support a multifractal

model in a range of scales [15, 16, 17, 18, 19]. This range is restricted by the intrinsic limi-

tations of these N -body simulations (even of state-of-the-art simulations). The limitations

are much less stringent for one-dimensional cosmological dynamics, which is simulated by

Miller et al [20], finding multifractal structure in a very long range of scales. One last but

not least argument for scale invariance is that the cosmic web produced by the adhesion

model [21] is found to have multifractal features [22, 23].

Mandelbrot [10] has also introduced the notion of fractal holes (“tremas”) and con-

sidered its application to the galaxy distribution. In particular, he has introduced the

notion of fractal lacunarity as a measure of the size of voids in fractals of equal dimension.

For any given dimension, one can construct a set of different fractals with progressively

decreasing lacunarity, leading to the possibility of a non-lacunar fractal. Mandelbrot [10]

indeed shows an example of non-lacunar fractal, the Besicovitch fractal, which in modern

terminology belongs to the class of multinomial multifractals. Mandelbrot [10] is actually

concerned about the low perceived lacunarity of the galaxy distribution and how to rec-

oncile it with the power-law galaxy correlation function. In our present study of cosmic

voids, a non-lacunar fractal indeed appears as the most suitable model.

At any rate, most fractal models of the galaxy distribution proposed so far are lacunar

and imply a self-similar distribution of cosmic voids. The self-similarity of voids has been

considered by Einasto et al [3] as a probe for scale invariance in the large scale structure.

Following the ideas of Mandelbrot [10], we have established that the rank-ordering of fractal

void sizes fulfills Zipf’s power law and tried to confirm it with data from galaxy surveys
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[24]. Thus far, the scaling of galaxy voids remains moot: our analysis does not show any

evidence [24], but analyses of recent surveys are more favourable [25, 26, 27]. However, it

is questionable that these scalings hold in a sufficiently long range.

In a multifractal geometry, it is natural to define voids as the locations of mass de-

pletions [18]. This notion of voids is more general than the notion of voids as empty holes

and, actually, allows us to define voids in non-lacunar fractals. We study here the geom-

etry of multifractal voids, which is connected with the geometry of under-densities in a

Gaussian field but is actually more complicated. From the multifractal geometry of dark

matter voids, we can derive the geometry of galaxy voids with a model of galaxy biasing.

We consider a simple biasing model, inspired by the “peak theory” of Gaussian fields [28],

but we substitute Gaussian peaks by multifractal mass concentrations, in accord with the

multifractal model of dark matter halos that we have proposed in Refs. [29, 18]. Our model

provides a new perspective on Peebles’ “void phenomenon” [30], regarding the emptiness

of voids.

We begin with the probabilistic analysis of voids in point distributions. We calculate

the probability of spherical voids and the size of the largest void in a Poisson distribution

(Sect. 2). We proceed to the general probability of voids in correlated point distributions

(Sect. 3) but we obtain less complete results. We introduce the hierarchical Poisson model

and the lognormal model as typical distributions and we connect them with fractal dis-

tributions. To measure the statistics of spherical voids in samples, we devise an efficient

void-finder in Sect. 4. In Sect. 5, we adopt a geometrical viewpoint centered on fractal

distributions and, in particular, cut-out sets, which we consider as cosmic web models.

We generalize this construction to multifractals and thence we proceed to a general study

of multifractal voids, which leads us to differentiate two types of voids according to their

geometry (Sect. 6). This general study of multifractal voids is combined in Sect.7 with the

results of Sect. 3 to characterize the voids in cosmological simulations and galaxy samples

In particular, we deduce some properties of galaxy voids in Sect. 7.2, assuming a multi-

fractal model of galaxy biasing. We summarize our results and present our conclusions in

Sect. 8. Finally, we include three appendices to deal with technical points.

2. Poissonian analysis of cosmic voids

2.1 The probability of voids

Let us recall the formulation of cosmic voids by Otto et al. [1], based on the results of

Politzer & Preskill [31]. They first quantify the fluctuations in a sample of randomly

distributed points (a homogeneous Poisson field). If the density of points is n, then the

probability of having k points in a region of volume V is given by the familiar Poisson

distribution with parameter N = nV :

Pk[V ] =
Nk

k!
e−N .

The condition k ≪ N means that the given region is devoid of points. However, the

calculation of the probability of having a void of given size and shape at any place is
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difficult. Politzer & Preskill’s analysis [31] yields the following formula for the probability

per unit total volume that there is some region of volume V and given shape that contains

k points:

Pk[V ] = cs
(nV )3

V
Pk[V ] ,

where cs is a coefficient that depends on the shape. To prove this formula, they simulate

the action of a void-finding algorithm. Thus, they calculate cs for spherical voids.

The simplest shape of a void is certainly the spherical shape. Let us call Pk[V ] the

probability density of having a volume V spherical void containing k points. A sphere

containing k points is defined by four (non-coplanar) points on its boundary, because the

sphere can always be enlarged so as to touch four points. We call it a k-void, understanding

that k ≪ nV . Pk[V ] can be estimated from a sample of the Poisson distribution by counting

the total number of k-voids and, then, dividing the number of them that have volume

between V and V + dV by their total number. To calculate the number of k-voids and

Pk[V ] analytically, we can employ the following method.

Since the points are uncorrelated, the probability distribution for each point is constant

and independent of the other points. The number density of point quadruplets is simply

the product
n4

4!
d3x1 d3x2 d3x3 d3x4 ,

where the denominator takes into account that the points are unordered. Its integral over

the total volume is the total number of quadruplets Nt(Nt−1)(Nt−2)(Nt−3)/4! ≈ N4
t /4!,

being Nt the total number of points. We can calculate the number density of k-voids as

the product of the total density of quadruplets and the probability Pk[V ], where V is the

volume of the sphere that corresponds to a given quadruplet. Therefore, the only problem

is to express the four-point volume element in terms of a set of variables that includes

the volume of that sphere. If we denote the position of the center of the sphere (the

quadruplet’s circumcenter) by xc, then the required number density is

n4

4!
Pk[V ] d3x1 d3x2 d3x3 d3x4 =

n4

4!
d3xc Pk[V ]V 2 dV f(θ1,θ2,θ3,θ4) d2

θ1 d2
θ2 d2

θ3 d2
θ4, (2.1)

where {θi}4
i=1 are the four sets of two angular coordinates over the sphere, and f is a

function of these angular coordinates. This expression follows from translation invariance

and dilation covariance only. The function f is calculated explicitly in Appendix A.

To calculate the number of k-voids of volume V , we integrate the right-hand side of

Eq. (2.1) over all variables except V . If we further integrate over V , we obtain the total

number of k-voids. The integral of n d3xc can be factored out, making the number of

k-voids proportional to the total number of points Nt. The integral of f over the angular

coordinates yields the factor 4! 12π2/35 (see Appendix A). Therefore, the number of k-voids

with volume between V and V + dV , per point of the sample, is

12π2

35
Pk[V ]n3 V 2 dV ,
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and the total number of k-voids per point is

12π2

35

∫

∞

0

Nk

k!
e−NN2 dN =

12π2

35
(k + 2)(k + 1) .

In particular, the number of voids (0-voids) per point is 24π2/35 = 6.76773. It is interesting

to compare this number with the numbers that correspond to regular lattices. For example,

we can consider a body centered cubic lattice, which has six void quadruplets (tetrahedra)

per point [32]. There are regular lattices with more voids per point, so it is not surprising

that the value in the random case is larger than six.

To obtain the probability of k-voids Pk[V ], we divide the number of k-voids of volume

V by the total number of k-voids:

Pk[V ] =
1

(k + 2)(k + 1)

(nV )3

V
Pk[V ] . (2.2)

Note that the name k-void makes sense only if V ≫ k/n, but 0-voids are voids for any

V . P0[V ] approaches unity in the limit V → 0, but P0[V ] is small in this limit, due to the

boundary factor (corresponding to the four points defining the void). In other words, the

probability that a randomly chosen small ball be empty is large, but the probability that

it have four points on its boundary and thus constitute a void is small. In fact, the most

probable void size (the mode) is V = 2/n. We can calculate other statistical quantities,

for example, the mean void size V = 3/n.

We can generalize the above method to other void shapes, e.g., ellipsoidal voids, and

indeed to any shape defined by a finite number of points. The number of k-voids has

an expression generalizing Eq. (2.1), where the exponent of V is the number of points

minus two; e.g, an ellipsoid is defined by nine boundary points. The number of k-voids is

always proportional to the number of sample points Nt. However, the function f of angular

coordinates can be very complicated, and we may not be able to integrate it and, thus,

obtain the proportionality constant. Nonetheless, Pk[V ] is a power of V with the given

exponent, and the normalization constant is easy to obtain.

Otto et al. [1] applied their results to determining the significance of some large voids

that had been found at the time and concluded that those voids were not significant,

namely, that they did not rule out a Poisson distribution. The conclusion that large voids

are not significant was contradicted by Betancort-Rijo [2] and does not hold anymore,

regarding recent galaxy surveys. One recent survey is studied in Sect. 7.2. In the next

section, we study in detail the statistics of large voids in Poisson distributions.

2.2 Extreme values: the largest and smallest voids

Following Otto et al. [1], we consider the size of the largest void in a given sample as the

most important statistic. Indeed, the largest voids are the ones to be first perceived. In

general, the statistics of extreme values is useful for data that are naturally rank ordered.

The largest value is the most important one. The smallest value and, hence, the total range

can also be useful statistics, for example, in a list of voids obtained with a void-finder. The
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theory of extreme values is a classic subject in statistics. A brief introduction to it is given

by Sornette [33].

The rank order is related to the cumulative distribution P>[V ] =
∫

∞

V P0[v] dv, which

we often employ in this work. In an M -sample of this distribution, namely, a sample of

M void sizes, the rank of one of them is the number of values larger than or equal to it,

that is, the order in the sorted list V1 ≥ · · · ≥ VM . If we have several M -samples available,

we can obtain the distribution of sizes for each rank and its average. If M = 1, we can

adopt as average value the median Vmed, such that P>[Vmed] = 1/2. In the general case of

M -samples, suitable average values are given by P>[Vm] = m/(M + 1), where m denotes

the rank. Thus, the largest value V1 fulfills P>[V1] = 1/(M +1) and the smallest one fulfills

P>[VM ] = M/(M + 1).

For spherical voids in the Poisson distribution, we can calculate P>[V ] from Eq. (2.2)

(with k = 0):

P>[V ] =

(

1 + nV +
(nV )2

2

)

e−nV . (2.3)

The probable sizes of the largest and smallest voids can be obtained by solving the corre-

sponding equations. Although these equations involve the total number of voids M rather

than the total number of points Nt, we know that M = 6.77Nt. Of course, we assume that

this number is large. Thus, the equation for the largest void is

P>[V1] ≈
(nV1)

2

2
e−nV1 =

1

M
. (2.4)

Letting N1 = nV1 denote the number of points that correspond to the largest void volume,

we are to solve the equation

N1 = ln
M

2
+ 2 ln N1 .

It can be solved iteratively, starting with N1 = 1. We obtain the asymptotic expansion

N1 = ln
M

2
+ 2 ln ln

M

2
+ · · · (2.5)

For a sample with Nt = 10000 points, N1 ≃ ln 33839 + 2 ln ln 33839 ≃ 15.

It is easy to generalize these results to non-spherical voids: in Eq. (2.3), the corre-

sponding terms of higher degree are to be added to the polynomial in its right-hand side.

Consequently, the coefficient of the sub-leading term in Eq. (2.5) is larger. Besides, the co-

efficient of proportionality between M and Nt grows as well, but this has a smaller effect.

Although the shape of voids is, in principle, a sub-leading effect, the polynomial in the

right-hand side of Eq. (2.3) tends to enV as the number of points that define the shape of

voids goes to infinity and, therefore, P>[V ] tends to one. In other words, the volume of the

voids grows with no bound when we remove any constraint on their shape, as is natural.

In Sect. 4, we mention constraints that are suitable for void-finding algorithms.

The equation for the smallest void is

P>[VM ] ≈ (1 + nVM) e−nVM =
M

M + 1
≈ 1 − 1

M
, (2.6)
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with solution

NM =
1√
M

. (2.7)

For spherical voids in Nt = 10000 points, there are about 67677 voids and the smallest

void is such that N67677 = 0.0038.

We can estimate the probable volume of the largest void in another way, by using

P0[V ], which is the probability that a given region of volume V be empty. Given a sample

with total volume Vt, let us tile it with Vt/V regions of volume V , for example, applying

a cubic mesh to it. The expected number of empty regions is P0[V ](Vt/V ). Therefore, if

only one of them is to be empty, then we have the equation P0[V ](Vt/V ) = 1 or

e−N1 =
N1

Nt
.

This equation can also be solved iteratively, yielding

N1 = ln Nt − ln lnNt + · · ·

For Nt = 10000 points, now N1 ≃ 7. Since P0[V ] is the probability that a given region

of volume V be empty, it represents a random trial region that is unlikely to be empty

even if it intersects the largest void of the same volume (as pointed out by Otto et al.

[1]). Therefore, this method underestimates the size of the largest void. Nevertheless, the

leading logarithmic term is the same as the leading term in Eq. (2.5), obtained from P>[V ].

By just taking the leading term ln Nt, we can deduce that the relative size of the largest

void, namely, the fraction of the sample’s volume that it occupies, vanishes as Nt → ∞.

In other words, voids disappear in the continuum limit n → ∞ of a Poisson distribution,

as is natural.

3. The probability of voids in correlated point distributions

It is possible to extend the preceding methods to correlated distributions of particles.

Otto et al. [1] already derived one formula for the probability of voids in correlated point

distributions, in terms of an expansion in powers of the density n. Betancort-Rijo [2]

employed instead a non-perturbative method based on the expression of P0[V ] in terms

of the probability of density fluctuations. We take inspiration from both approaches to

generalize the preceding calculations. Ultimately, we intend to find the behavior of the

probability of voids in distributions with strong correlations, namely, in distributions with

strong mass concentrations. In particular, we study fractal distributions.

3.1 The general probability of voids

The probability of spherical voids in the general case is studied by Otto et al. using expan-

sions in powers of the density n [1]. The function P0[V ] (void probability function) was

previously expressed by White [34] as

P0[V ] = exp

[

∞
∑

k=1

(−nV )k

k!
ξ̄k

]

, (3.1)
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where ξ̄1 = 1, and, for k ≥ 2, ξ̄k is the average in V of the correlation function ξk:

ξ̄k =
1

V k

∫

V
d3x1 · · · d3xk ξk(x1, . . . , xk).

P0[V ] is analogous to the grand-canonical partition function in statistical mechanics (with

velocities integrated over) and the expansion in terms of the ξ̄k (the cumulants) is analogous

to the cluster expansion. This connection was noticed by Otto et al. [1] and is considered

further by Mekjian [35]. We assume that the cumulants ξ̄k (k ≥ 2) always vanish in the

limit V → ∞ and that they vanish the more rapidly the larger k is. Thus, the first

correction to the Poisson formula is given by a non-vanishing ξ̄2 (a Gaussian field). Of

course, Eq. (3.1) is only valid insofar as the expansion converges (see Sect. 3.2).

White [34] noticed that P0[V ] can also be expressed, using the local particle density

ρ, as the integral over ρ of the product of the probability of ρ and the probability of a

void volume V given that the density is ρ. The latter probability is given by the Poisson

formula. Therefore,

P0[V ] =

∞
∫

0

P (ρ) exp [−ρV ] dρ . (3.2)

The exponential inside the integral can be expanded in powers of ρV and, assuming that

the integration and the sum can be interchanged, P0[V ] becomes an expansion in terms of

moments:

P0[V ] =

∞
∑

k=0

(−nV )k

k!
µ̄k , (3.3)

where the moments are defined by

µ̄k =

∞
∫

0

(ρ

n

)k
P (ρ) dρ =

1

(nV )k

∫

V
d3x1 · · · d3xk 〈ρ(x1) · · · ρ(xk)〉,

with n = 〈ρ〉 (note that µ̄1 ≡ 1). Of course, the moment expansion in Eq. (3.3) is equivalent

to the cumulant expansion in Eq. (3.1). However, the integral expression (3.2) is more

general and is always valid (see Sect. 3.2) .

If we remove the density fluctuations by making P (ρ) = δ(ρ−n), we recover the Poisson

formula, that is, the first term in the expansion (3.1). If we account for small fluctuations

by taking a Gaussian P (ρ) [2], we further obtain the second term in the expansion (3.1).

We must also consider a variant of the Poisson distribution, such that the total space is

divided in two regions, one being empty and another having the Poisson distribution. This

second region is meant to be formed by matter clusters (of uniform density). If nc denotes

the density inside the clusters, we have that

P (ρ) =

(

1 − n

nc

)

δ(ρ) +
n

nc
δ(ρ − nc).

The two constants before the delta functions are deduced from the normalization of P (ρ)

and the condition 〈ρ〉 = n. The void probability function given by Eq. (3.2) is

P0[V ] = 1 − n

nc

(

1 − e−ncV
)

= 1 +
n

nc

∞
∑

k=1

(−ncV )k

k!
. (3.4)
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Comparing it with Eq. (3.3), we deduce that µ̄2 = nc/n and that the moments fulfill the

hierarchical relation µ̄k = µ̄k−1
2 . This hierarchical model is especially interesting when

nc ≫ n, namely, when the volume occupied by the matter clusters is a small fraction of

the total volume. Then, it coincides with Fry’s hierarchical Poisson model [36], with

P0[V ] = exp

[

−1 − e−nV ξ̄2

ξ̄2

]

(3.5)

(note that then ξ̄2 = µ̄2−1 ≫ 1). Hierarchical models are related to fractal models [37, 11],

which we study in detail in Sect. 3.4.

The moments always satisfy the inequality µ̄k ≥ µ̄k−1
2 , among other inequalities [38].

As we have seen, the lowest allowed value of µ̄k occurs in distributions that are uniform

inside their support. In spite of this uniformity, there are strong density fluctuations

in the total volume when nc ≫ n, since the support is sparse. We now consider the

lognormal model [39], which can have strong density fluctuations inside its support, such

that µ̄k ≫ µ̄k−1
2 . This model is also related to fractal models.

For the lognormal model,

P0[V ] =
1

σ
√

2π

∞
∫

0

exp

[

−(ln ρ − µ)2

2σ2
− ρV

]

dρ

ρ

=
1

σ
√

2π

∞
∫

0

exp

[

−(ln r + σ2/2)2

2σ2
− r nV

]

dr

r
, (3.6)

where µ = ln n− σ2/2 (with n = 〈ρ〉) and we have made the change of variable r = ρ/n to

obtain the second integral. We can restrict the support of this distribution as well, with the

consequent addition of a constant to P0[V ] and substitution of n by nc. But we understand

that the support is the total volume, for the moment. The constant σ in Eq. (3.6) actually

depends on V , and P (ρ) becomes Gaussian and eventually uniform as V grows and σ → 0.

However, if we take σ ≃ 1, then the probability that a relatively large volume be empty,

namely, that V ≫ n−1, is much larger that the corresponding Poisson value. For example,

with σ = 1 and nV = 10, Eq. (3.6) yields P0[V ] = 0.0539, whereas exp(−10) = 0.0000454.

The lognormal moments are easily evaluated, yielding µ̄k = exp
[

k(k − 1)σ2/2
]

. In the

limit σ → 0, µ̄k tends to one and ξ̄k vanishes (if k ≥ 2). Moreover, the cumulants actually

vanish the more rapidly the larger k is. In the opposite limit, when σ is large, the moments

grow exponentially and, furthermore, µ̄k ≫ µ̄k−1
2 .

3.1.1 Calculation of the distribution of voids

To calculate the number of spherical voids in a correlated point distribution, the expression

for a quadruplet of uncorrelated points in the left-hand side of Eq. (2.1) must be replaced

by

n4

4!
d3x1 · · · d3x4 [ζ1(x1)ζ1(x2)ζ1(x3)ζ1(x4)+
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ζ2(x1, x2)ζ1(x3)ζ1(x4) + · · · + ζ1(x1)ζ1(x2)ζ2(x3, x4)+

ζ2(x1, x2)ζ2(x3, x4) + · · · + ζ2(x1, x4)ζ2(x2, x3) +

ζ3(x1, x2, x3)ζ1(x4) + · · · + ζ1(x1)ζ3(x2, x3, x4) +

ζ4(x1, . . . , x4)] P0[V ] , (3.7)

where the ζ(·) are correlation functions conditioned by the presence of the void (using

White’s general definitions [34]). These correlation functions can be expanded in powers

of n and written in terms of ordinary correlation functions:

ζ1(x) = 1 +
∞
∑

k=1

(−n)k

k!

∫

V
d3y1 · · · d3yk ξk+1(x, y1, . . . , yk),

ζ2(x1, x2) = ξ2(x1, x2) +
∞
∑

k=1

(−n)k

k!

∫

V
d3y1 · · · d3yk ξk+2(x1, x2, y1, . . . , yk),

etc. In particular, ζ1(x) is independent of x, due to translation invariance, and n ζ1 can

be interpreted as a conditional density. From expression (3.7), we can proceed like in the

Poisson case, namely, we can express the four-point volume element in terms of the sphere’s

volume and angular variables, factor out n d3xc, and then integrate over the angular co-

ordinates. Unfortunately, this integration cannot be explicitly worked out in the general

case, because the ζ(·) depend on the angular coordinates.

Naturally, an expression for the number of non-spherical voids, e.g., ellipsoidal voids,

can also be written; but it is even less tractable than the expression for spherical voids.

On the other hand, we could consider k-voids instead of empty voids. Needless to say, the

extra k points also make the expressions less tractable.

In one dimension, the geometry is much simpler. In general, only the two-point function

is involved in the expression corresponding to (3.7), there are no angular coordinates, and

there is one void interval per point. Therefore,

P0[L] =
n

2
[ζ2

1 + ζ2(L)]P0[L]. (3.8)

Of course, this one-dimensional formula is not directly applicable to three-dimensional

cosmic voids, but it is applicable to void intervals in pencil-beam surveys, as measured by

Einasto et al [3], for example.

3.2 Scope of the perturbative expansions in the density

The expansions in powers of the density used in the preceding section require that the

density be small, in a sense that we need to make precise. The simplest expansion to

study is the cumulant expansion of P0[V ] given by Eq. (3.1). The successive terms of this

series are expected to be of small magnitude and eventually decreasing. In particular, the

second term of the series is smaller than the first (Poisson) term if N = nV < ξ̄−1
2 . We

can interpret this condition in terms of the number variance in the volume V , namely,

〈δN2〉
N2

=
1

N
+ ξ̄2 .
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When N < ξ̄−1
2 the Poisson fluctuations dominate over the fluctuations due to correlations,

and vice versa. However, the cumulant expansion (3.1) can converge in spite of having

initial terms that increase. For example, the expansion of P0 for Fry’s hierarchical Poisson

model in Eq. (3.5) converges for any value of Nξ̄2, although the initial terms increase in

magnitude when Nξ̄2 > 1, until the kth term is such that k ≈ Nξ̄2. Thus, when Nξ̄2 ≫ 1,

it is necessary to sum a large number of terms, some of which are large (in absolute value),

to obtain a negligible sum, for e−Nξ̄2 → 0 as Nξ̄2 → ∞. This makes the series unsuitable

for numerical computations.

The cumulant expansion of the lognormal model has worse behavior. Indeed, the

integral formula (3.6) shows that P0[V ] is not analytic at V = 0 [39]. In consequence,

the moment expansion (3.3) must diverge. This also follows from the expression µ̄k =

exp
[

k(k − 1)σ2/2
]

. ln P0[V ] is also not analytic at V = 0 and the cumulant expansion

diverges as well. Actually, the moment and cumulant expansions are asymptotic as N → 0.

They also are alternating series. An alternating asymptotic series converges while its

terms are of decreasing magnitude, and it must be terminated at the term with the least

magnitude (which should be included with half its value). Therefore, a small value of Nξ̄2

is mandatory. We can relate the bad behavior of these density expansions in the case of

strong clustering (σ ≫ 1) to the strong growth of moments, such that µ̄k ≫ µ̄k−1
2 . This

strong growth of moments is typical of certain distributions, in particular, multifractals.

For the lognormal void probability function at large σ, the asymptotic expansion of

the integral in Eq. (3.6) worked out in Appendix B yields

P0[V ] = 1 −
√

2N

σ
e−σ2/8

[

1 + O(σ−2)
]

. (3.9)

This expression provides a reasonable approximation already for moderately large σ. For

σ = 3, the approximation is quite good in a relevant range of N . When N = 1, the value

computed directly with Eq. (3.6) is P0[V ] = 0.885346 and the one computed with Eq. (3.9)

is P0[V ] = 0.846957. In contrast, the condition N < ξ̄−1
2 ≃ exp(−σ2) = 0.00012 is far too

restrictive.

The non-analyticity of the lognormal P0[V ] at V = 0 is due to the slow decay of its

probability function P (ρ) in the high density limit. In general, mass distributions that

are singular on small scales possess probability functions with fat tails in the high density

limit. Nevertheless, the probability function P (ρ) can have moments of any order, like the

lognormal distribution. Then, the series expansions of P0[V ] or ζ(·) are well defined, but

they are asymptotic rather than convergent. Distributions with moments of any order but

with fat tails such that moment and cumulant expansions diverge can be called lognormal

like. In these distributions, the full set of moments or cumulants does not determine a

unique function P (ρ). To do this, one needs to add moments of non-integer order and even

moments of negative order. In particular, the description of multifractals requires all the

q-moments, with q any real number [11, 40]

3.3 The largest void in a correlated distribution

In absence of the probability function P0[V ], we do not have detailed knowledge of the
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distribution of void sizes, but we can always find a lower estimate of the largest void

size by using P0[V ] as in Sect. 2.2: a lower estimate of the largest void size is given by

the solution of the equation P0[V ](Vt/V ) = 1. For example, we consider the hierarchical

Poisson model, with P0[V ] given by Eq. (3.4), and the lognormal P0[V ] in Eq. (3.6). For

the largest void, N = nV ≫ 1, in general. Thus, we must focus on this limit, which we

can interpret, alternately, as the limit of large volumes or as the continuum limit.

In the hierarchical Poisson model, we can take the continuum limit n → ∞ while

preserving the distribution of clusters, just by keeping µ̄2 = nc/n constant. Thus, the

voids inside clusters vanish while the voids between clusters are unaffected. In that limit,

Eq. (3.4) becomes

P0[V ] = 1 − n

nc
= 1 − 1

µ̄2
. (3.10)

This quantity is close to one when the clustering is strong, namely, when µ̄2 ≫ 1. Then,

the fraction of empty space is large, even in the continuum limit of the distribution, and

naturally we can find large voids. The largest void size is determined by the distribution

of clusters, which is assumed to be a Poisson distribution.

Regarding the lognormal model, we need the asymptotic form of the integral in Eq.

(3.6) for large N = nV that is worked out in Appendix B. Keeping only the first term, we

have

ln P0 ≈ −(ln N)2

2σ2
. (3.11)

In this case, limN→∞ P0 = 0, like in the Poisson distribution. Naturally, the lognormal

P0[V ] has a decrease with V that is slower than the exponential decrease of the Poisson

distribution. For the largest void, we have the equation:

−(ln N)2

2σ2
= ln

N

Nt
.

Its solution is simply

ln N ≈ σ
√

2 ln Nt . (3.12)

Compared to the leading asymptotic term in the Poisson case, namely, N = ln Nt, we notice

that the size of the largest void is greatly enhanced. For example, taking Nt = 10000 points

and σ = 1, now N ≃ 73. Nevertheless, the relative size V/Vt of the largest void goes to

zero as Nt = nVt → ∞, like in the Poisson case.

A remark is in order here: σ is not really a constant, but decreases with V , as we

comment after Eq. (3.6). This fact can be taken into account to derive an equation for

the size of the largest voids more accurate than Eq. (3.12) if we know the law σ(V ). The

scaling model that we study in Sect. 3.4 provides us with a simple form of that law. At

any rate, Eq. (3.12) is sound if σ is of the order of unity at the scale V of the largest void.

In general, the largest value in a random sample from a distribution is determined by

the tail of the distribution. If the sample is very large, the distribution of the largest value

must approach one of three distributions, named extreme value distributions [33]. Only two

extreme value distributions are relevant in our context: the Gumbel distribution and the

Fréchet-Pareto distribution (the third distribution is for bounded variables). The domain
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of attraction of the Gumbel distribution consists of the probability density functions with

a tail falling faster than a power law. It contains the Poisson distribution of voids and

also lognormal-like void probability functions. The domain of attraction of the Fréchet-

Pareto distribution consists of the probability density functions with a power law tail. The

Fréchet-Pareto distribution assigns considerable probability to large values and is such that

the largest value is of the same order of magnitude as the sum of the remaining values,

even as the number of values tends to infinity. We have found an example of this behavior

in Fry’s hierarchical Poisson model. Voids of this type are typical of fractal distributions,

which we study next.

3.4 Voids in scaling distributions

We have seen that the analytical description of voids is difficult when the density of points

is large or the correlations are strong, namely, when Nξ̄2 > 1. Of course, the analytical

treatment of strongly correlated distributions, with ξ̄2 ≫ 1, is difficult in general. Some

progress can be made with the use of tractable specific models which, arguably, have

general features. For example, we have mentioned that the Gumbel or Fréchet-Pareto

distributions are limit distributions of the largest void, featuring a limited or unlimited

size of it, respectively. As specific models, we have chosen the hierarchical Poisson model

and the lognormal model, connected with the Fréchet-Pareto and Gumbel distributions,

respectively. Our two specific models are also connected with fractal distributions, which

have special interest.

We can introduce self-similar fractals as a generalization of the hierarchical Poisson

model. This hierarchical model has only two levels in the hierarchy, namely, clusters and

particles; but we can imagine that every particle is also a cluster at the adequate level of

resolution, thus building a hierarchy with many levels, even an infinite number. An infinite

self-similar cluster hierarchy constitutes a fractal. More formally, a fractal is a continuous

distribution (with mean density n → ∞) such that it has strong correlations with scaling

properties; namely, the correlation functions ξk as well as their integrals ξ̄k are power laws.

In particular, the two-point correlation is ξ2(r) = (r0/r)
γ , where r0 is the homogeneity

scale, and the relative mass variance in a cell of volume V is ξ̄2 = (V0/V )γ/3, where V0 is

a homogeneity volume (of the order of magnitude of r3
0).

We must distinguish monofractals, whose scaling properties are characterized by just

the exponent γ or the dimension D = 3−γ, from multifractals, which have a spectrum of di-

mensions. Fractal distributions can have voids in spite of being continuous and statistically

homogeneous,1 unlike other types of distributions. For example, the Poisson distribution

or lognormal-like distributions do not have voids in the continuum limit. On the other

hand, when the density n is finite, the fractal regime holds while nV ξ̄2 > 1, namely, for

volumes V such that n V
γ/3
0 V D/3 > 1.

Since a fractal distribution is scale invariant, it is reasonable to assume that the dis-

tribution of voids in a fractal is also scale invariant. Before considering the scaling of voids

1Statistical homogeneity means that statistical quantities are translation invariant and, of course, is

weaker than strict homogeneity.
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in three dimensions, let us consider one-dimensional fractals, in which the geometrical

problems regarding the shape of voids are absent.

In one dimension, a probabilistic formulation of the scaling of voids is provided by the

application of the Lévy stable distributions [10]. Their stability means that the sum of

a number of independent identical variables keeps the same distribution, after rescaling.

A Lévy distribution becomes a power law for sufficiently large values of its variable and,

furthermore, it is an attractor of distributions with the same power-law behaviour (gener-

alizing the central limit theorem). Therefore, a distribution such that the interval between

successive points has probability P0[L] ∼ L−D−1, for 0 < D < 1 and large L, converges in

the continuum limit to a Lévy flight (a generalized random walk), in which P0[L] ∝ L−D−1,

for any L, and the mass in an interval of length l is distributed as lD. This power-law form

of P0[L] is not integrable at L = 0 and must be understood as a conditional probability:

the probability of a void of length L given that L is longer than an arbitrary length λ is

the Pareto distribution P0[L|L > λ] = DλD/LD+1 (see Ref. [10] and Appendix C).

Thus, the construction of a Lévy flight directly defines P0[L], without resort to ex-

pression (3.8) for one-dimensional voids. In particular, the void probability function P0[L]

tends to one and becomes irrelevant for the probability of voids. In fact, P0[L] → 1 as

a consequence of the strong correlations between the points in a Lévy flight: a given in-

terval is likely to contain no points, because the probability of finding one point is only

non-negligible when conditioned on being close to another point. Mandelbrot [10] shows

that the conditional probability of having some mass in an interval of length l inside an

interval of length L that is known to have mass is P [M(l) > 0|M(L) > 0] = (l/L)1−D.

Hence, P0[L] is not exactly one due to the existence of the homogeneity scale r0, and we

can write

P0[L] = 1 − P [M(L) > 0 |M(r0) > 0] = 1 − (L/r0)
1−D,

which tends to one as L/r0 → 0. Remarkably, this holds independently of the value of the

density n, even as n → ∞.

Both properties, namely, P0[L] ∝ L−D−1 and P0[L] → 1 for L ≪ r0, can be generalized

to other one-dimensional fractals (with voids that are not independent) and also to fractals

in higher dimensions. Actually, higher-dimensional Lévy flights are not useful to model

the scaling of voids, because in them an empty interval between two points does not define

a void. Therefore, it is necessary to employ more elaborate geometrical concepts. We

introduce these concepts in Sect. 5 and, thence, we formulate the appropriate version of

the power-law form of the probability of voids P0[V ]. In dimension d and letting V denote

the void’s d-volume, we can loosely write this law as P0[V ] ∼ V −Db/d−1, where Db is the

box-counting dimension (which is equal to D for Lévy flights). The behavior of P0[V ] for

small V in a fractal is also governed by Db, because, by definition, the number of non-

empty boxes of size V follows the power law V −Db/d [40]. Therefore, the ratio of non-empty

boxes, which we can interpret as the probability that one box be non-empty, follows the

power law V 1−Db/d. In consequence,

P0[V ] = 1 − (V/V0)
1−Db/d, (3.13)
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where V0 is the homogeneity volume. If Db < d, P0[V ] tends to one as V → 0. Conversely,

as V → V0, P0[V ] vanishes. That is to say, V0 represents the size of the largest voids.

The condition Db < d is fulfilled by Lévy flights and, in general, by monofractals,

since they have only one dimension D, which has to be smaller than d. In this regard,

note that Eq. (3.10) for the hierarchical Poisson model coincides with the particular case

of Eq. (3.13) in which Db = d − γ and µ̄2 = (V0/V )γ/d. However, a multifractal can have

box dimension Db = d while its other dimensions are smaller than d. Then, P0[V ] does not

tend to one for small V and actually vanishes, according to Eq. (3.13). These multifractals

belong to the type of non-lacunar fractals introduced by Mandelbrot [10]. We can obtain

more information about P0[V ] by recalling that P (ρ), in this case, can be expanded around

the value that maximizes ρ (the mode), resulting in a lognormal distribution [41, 18]. Its

void probability function is given by Eq. (3.6), which has the asymptotic form given by

Eq. (3.11) and, therefore, vanishes in the continuum limit n → ∞.

Besides, it is instructive to compare the asymptotic form of the lognormal P0[V ] in

the nonlinear regime given by Eq. (3.9) with the form given by Eq. (3.13) for fractals with

Db < d. Both equations imply that P0[V ] approaches one if the correlations are strong,

namely, if V ≪ V0 in Eq. (3.13) or if σ is large in Eq. (3.9). However, the condition is

independent of the density in Eq. (3.13), whereas N = nV appears in Eq. (3.9). Thus,

in this equation, P0[V ] is close to one only as long as N ≪ σ2 exp(σ2/4) (a value that

can be large), but the equation becomes invalid for larger N and, in fact, P0[V ] → 0 as

N → ∞. Multifractals with Db = d have no voids in the continuum limit, like the Poisson

distribution, but the large fluctuations due to the strong correlations imply that volumes

such that N is relatively large still have a good chance of being empty, unlike in the Poisson

distribution.

To summarize, let us restrict ourselves to d = 3: fractals with Db < 3 have scaling

voids whereas multifractals with Db = 3 are non-lacunar fractals and do not have voids

at all in the continuum limit (assuming that they are statistically homogeneous). Finite

samples of these non-lacunar fractals have voids, but P0[V ] does not have to be a power

law. To verify these conclusions, we resort to geometric methods in Sects. 5 and 6. In

particular, we show in Sect. 6 that voids of a more sophisticated type can actually be

defined in multifractals with Db = 3.

4. A spherical void finder

We have seen that it is very difficult to derive a general analytic expression of the probability

of spherical voids P0[V ]. However, the Poisson law given by Eq. (2.2) or the Pareto law

in fractals with Db < 3 are very suitable for experimental confirmation. The experimental

confirmation can be achieved through the measure of the statistics of voids in simulated

samples. In fact, the statistic most easily obtained from simulations is the rank order of

void sizes. The rank-ordering corresponding to the Pareto law is known as Zipf’s law.

The voids in a point distribution can be extracted with the help of a suitable void-

finder. Many void-finders have been devised already, which essentially differ in the defini-

tion of voids that they use. A comparison of void-finders is made by Colberg et al [9]. The
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more recent void-finders usually define voids of variable shape [4, 5, 26]. We have devised

a finder of variable-shape voids based on the Delaunay tessellation of a set of points [42].

This tessellation is the natural geometric construction to use, for it provides the unique set

of empty spheres associated with the set of points, in the sense that each sphere is defined

by four non-coplanar points that form a Delaunay simplex [32]. Thus, these spheres are

precisely the spherical voids defined in Sect. 2.1, which the algorithm of Ref. [42] merges

if they have sufficient overlap. The overlap is measured by a suitable parameter. The

sequences of voids found in simulated monofractals follow Zipf’s law [42]. However, one

must avoid too much merging of spheres, for the voids can adopt too complex shapes and,

sometimes, one void percolates through the sample.

In general, finders of variable-shape voids must have adjustable parameters to prevent

inappropriate shapes such as the dumb-bell shape, as discussed by ElAd and Piran [5].

We remark in Sect. 2.2 that the absence of any restriction on the shape of voids actually

leads to the presence of unbounded voids even in a Poisson distribution. This is intuitively

obvious, for the void can then snake through the set of points. This snaking can be averted

just by demanding that voids be convex. Unfortunately, this neat condition is very complex

from the algorithmic standpoint.

The simplest way to forbid strange shapes of voids is to prescribe voids of constant

regular shape. We have already shown that void-finders based on voids of constant shape

are suitable for demonstrating the scaling of voids in fractal distributions [24]. And the

simplest shape is the sphere. Of course, the natural set of spherical voids is the set of

spheres defined by the Delaunay tessellation, which we do not need to merge. It is natural

to require that the spheres are contained in the sample region and that they do not overlap.

This condition removes some spheres, but we always want to keep the largest one. Thus,

a convenient algorithm begins by finding the largest sphere contained in the sample region

among those defined by the Delaunay tessellation, and proceeds by searching for the next

largest non-overlapping sphere, until the available spheres are exhausted.

This void-finder is applicable to any sample, fractal or not. In samples of uniform

distributions, we can test the law studied in Sect. 2.1. This law refers to all the spherical

voids in a sample but the no-overlap condition removes many of them. However, the

sample of voids obtained under this condition is unbiased, arguably. Therefore, it has the

same distribution as the total set of voids. To test it, we have generated a random set of

10000 points in the unit square and then run the void-finder. Its output (in rank order)

is compared in Fig. 1 with the analytical prediction. This prediction results from the two-

dimensional version of Eq. (2.3), namely, P>[A] = (1+nA) e−nA, where A is the void area.

Given that the number of voids with area equal to or larger than A, N>(A), is the rank

R of the void with area A, we deduce the rank order by inverting N>(A). The agreement

shown by Fig. 1 is remarkable.

To test the scaling of voids, we have applied the void-finder to several samples of

random Cantor-like fractals. We show in Fig. 2 the results corresponding to a random

sample of 10000 points of a two-dimensional random Cantor-like fractal with D = 1.585

and compare them with the expected Zipf law, r ∼ R−1/D [24]. Note that the found

circular voids (Fig. 2, top) do not cover the entire sample region (the unit square). In fact,
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Figure 1: Rank-ordering of the circular voids in a random set of 10000 points (A is the void area

and R is the rank) compared with the predicted law (gray line).
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Figure 2: (Top figure) Random Cantor-like fractal sample with 10000 points (D = 1.585) and its

corresponding voids found with the new algorithm (described in the text). (Bottom figure) Log-log

plot of the rank-ordering of the void radii, compared with the straight line with slope 1/D.

they cover only 70% of it. Nonetheless, they convey well the notion of a hierarchy of voids.

The application of this void-finder to multifractal samples is explained in Sects. 6.3.
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5. Geometry and scaling of voids in a monofractal

In this section, we study the geometry of voids in monofractals and prepare the gener-

alization to multifractals. Our ultimate goal is to formulate a fractal model of voids in

accord with a cosmic web structure. We consider the matter distribution to be continuous,

unless the contrary is explicitly stated. The detailed treatment of continuous distributions

requires some basic notions of geometry that we now recall, for we use them in this section

and the following sections. These notions are necessary, in particular, to understand the

intricate geometry of fractal voids.

In Euclidean space, the boundary of a region is defined as the set of points such that any

ball centered on them intersects both the region and its complement. A region is closed if

it contains its boundary. Normally, fractals live in closed sets that just consist of boundary

points. A region is open if it does not contain any boundary point. In consequence, the

complement of an open set is closed and vice versa. The union of open sets is open. The

largest open part of a region is called its interior. A region is connected if it cannot be

divided into two parts such that each one is disjoint with the boundary of the other. A

region is convex if it contains every segment with ends inside it. Finally, a set is called

dense if it intersects every open set.

Scaling of voids is natural in a strictly self-similar fractal: given that the fractal is the

union of a number of smaller similar copies of itself, every void is reproduced on smaller

scales, in an infinite hierarchy. Mandelbrot [10] expressed the similarity of voids as the

diameter-number relation N>(δ) ∼ δ−D, where the diameter of a void is the greatest

distance between its points. Using the rank R(δ) = N>(δ), we can write the diameter-

number relation as the Zipf law δ(R) ∼ R−1/D. Random fractals can only be self-similar

in a statistical sense, and then voids should adjust to the Pareto probability law P>[δ] =

(δ0/δ)
D, with δ0 being the diameter lower cutoff. This law is indeed fulfilled by construction

in one-dimensional Lévy flights, as seen in Sect. 3.4. In higher dimensions, the geometric

construction of cut-out fractals produces a large class of fractals that are not strictly self-

similar but fulfill a form of the Zipf law [10, 43, 44]. We review this construction as a

model of the cosmic foam in Sect. 5.1, and we also consider the scaling of voids in general

monofractals. In Sect. 5.2, we introduce the generalization to non-uniform cut-out fractals,

as cosmic web models. Non-uniform cut-out fractals directly connect with multifractals,

which are the subject of Sect. 6.

5.1 Cut-out fractals and cosmic foam

A cut-out set is obtained by removing an infinite sequence of disjoint connected open

regions from an initial region that is bounded, closed and convex. Furthermore, for the set

to be fractal, with vanishing volume, the sum of the volumes of the removed regions must

tend to the volume of the initial region [10, 43]. Strictly speaking, every closed set is a

cut-out set, because its complement is open and, therefore, is the union of a sequence of

disjoint connected open regions.2 But it is natural to demand that proper cut-out fractals

have infinite sequences of cutouts (voids). In one dimension, voids are necessarily open

2This statement is a classic theorem of topology, proved in Ref. [45], for example.
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intervals, and every cut-out fractal can be constructed like the Cantor set, namely, by

removing an infinite sequence of open intervals. Of course, this sequence does not need

to be strictly self-similar. For example, the sequence of voids in a Lévy flight is only

statistically self-similar.

In higher dimensions, a connected open region can have a very complicated shape;

for example, it can surround any number of “islands” and have a rough boundary (like

the shape of a cloud). If we restrict ourselves to cut-out fractals with convex voids and

we further demand that these voids do not degenerate to lower dimensional objects along

the sequence, this sequence must scale in a precise sense [44] (without being strictly self-

similar). The scaling can be expressed as a particular power-law form of the rank order

of diameters: δ(R) ≍ R−1/Db , in terms of the relation ≍, which means that the quotient

between the related quantities is bounded above and below. This number-diameter relation

is equivalent to a common form of Zipf’s law: the log-log plot of the rank ordering stays

between two parallel lines with slope given by the exponent (−1/Db, in the present case).

Of course, since the sequence of voids is non-degenerate, namely, the void volume V ≍ δ3,

we can also express the rank-ordering as

V (R) ≍ R−3/Db . (5.1)

A cut-out fractal with non-degenerate convex voids is formed by the union of the

boundaries of its voids.3 Thus, this type of fractals formalizes the geometry of fractal

foams. Regarding the cosmic structure, the first structures formed are actually sheets or

walls (Zeldovich’s “pancakes”) [46]. The sheets form as the result of adhesive gravitational

clustering: the initial under-dense regions expand and become depleted while the walls

between them concentrate their mass, forming a foam. In fact, foam models of the cosmic

structure have been proposed years ago. In particular, let us mention the Voronoi foam

model by Icke and van de Weygaert [47]. It is natural to attribute to the cosmic foam

statistical self-similarity, which should manifest itself in the void rank-ordering law (5.1).

We must examine if Eq. (5.1) still holds when we only consider spherical voids, namely,

the rank-ordered sequences of non-overlapping spherical voids produced by our void-finder

(e.g., the sequence of voids in Fig. 2). In a cut-out fractal, each spherical void must fit

in one of its natural voids. The radius of the largest fitting sphere defines the inradius

of the void. If we denote this inradius by r, we have that r ≍ δ, for the sequence of

voids is non-degenerate. Therefore, Eq. (5.1) still holds for the rank-ordered sequences of

non-overlapping spherical voids.

Finally, we consider rank-ordered sequences of voids in a fractal that is not constructed

as a cut-out set. We can deal with this case by endowing the fractal with a sort of “cut-out

structure”, namely, by packing the complement of the fractal with open sets. The geometry

of the complement of a fractal and its packing has been studied by Tricot [48, 49]. He proves

a result equivalent to Eq. (5.1), under several conditions on the sequence of open sets. One

important condition is the non-degeneracy of the sequence, in the sense explained above.

3Mandelbrot [10] actually studies self-similar unions of boundaries in their own right, especially in two

dimensions, under the name of sigma-loops (sigma-loop = sum of loops).
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Another condition applies to the shape of voids and is more general than convexity. And

the condition that is crucial in the present case is that voids must be close to the fractal,

namely, the quotients of their distances to the fractal by their diameters must be bounded.

This latter condition is certainly satisfied if the voids always touch the fractal.

5.2 The cosmic web as a non-uniform cut-out fractal

Let us consider a cut-out set supported on the boundaries of its voids but with a non-

uniform mass distribution on them. We regard it as an improved model of the cosmic

fractal foam that arises from adhesive clustering: the foam evolves with the motion of the

matter in the walls towards their intersections to form filaments, and the motion along the

filaments to form nodes, resulting in a very non-uniform distribution. This distribution of

sheets, filaments and nodes is called the cosmic web.

For illustrating the structure of non-uniform cut-out fractals, we construct a non-

uniform fractal foam toy model that we call the Cantor-Sierpinski carpet. The Cantor-

Sierpinski carpet is based on the standard Sierpinski carpet and on the two-dimensional

Cantor set that is the Cartesian product of two standard Cantor sets. The Sierpinski

carpets constitute a famous class of self-similar cut-out fractals with regular voids. The

standard triadic Sierpinski carpet is also constructed as a sort of two-dimensional general-

ization of the middle third Cantor set: from an initial square, the (open) middle sub-square

of side one third is cut out, and the iteration proceeds with the remaining eight sub-squares

[10]. This fractal has dimension D = 1.89.

We construct the Cantor-Sierpinski carpet using a modified algorithm. The first step

still consists in cutting out the middle sub-square, an operation that we can describe

as a uniform displacement of mass from that sub-square to the eight surrounding sub-

squares. Then, to simulate the latter mass displacement along cosmic foam walls, we

further concentrate part of the mass in the four sub-squares at the corners. Thus, the

fractal generator consists in the division of the total mass into the nine sub-squares such

that the central one receives nothing, the four sub-squares at the corners each receive a

proportion p1 of the total, and the remaining four sub-squares each receive a proportion

p2 < p1, with 4(p1 + p2) = 1. The resulting non-uniform cut-out fractal is supported on

the Sierpinski carpet but has the highest concentrations of mass in the two-dimensional

Cantor set: The case p1 = 1/6, p2 = 1/12 is shown in Fig. 3. Non-uniform fractal foams

are actually multifractals.

6. Voids in a multifractal

In a multifractal, the mass in a ball of radius r centered on a point x decreases as a power

of r, with a local exponent α(x) that varies with the point [40, 11]. α(x) is well defined

for every point such that the mass in any ball centered on it is non-vanishing. The points

that fulfill this condition form the support of the distribution, which is necessarily a closed

set.4 The density at x is proportional to the limr→0 rα(x)−d, where d = 3 is the dimension

4In general, the support of a mass distribution is defined as the smallest closed set that contains all the

mass [40].
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Figure 3: Two-dimensional non-uniform fractal foam: the Cantor-Sierpinski carpet. It is a multi-

fractal cut-out set: beside the empty voids corresponding to the Sierpinski carpet, we can perceive

very low density regions, in contrast with the mass concentrations near the two-dimensional Cantor

dust.

of the ambient space. Points with α(x) < d = 3 are singular mass concentrations (the

density diverges at the point x). In a multifractal model of cosmic structure, it is natural

to identify these mass concentrations with dark matter halos [29, 18]. There are also points

with α(x) > 3, belonging to mass depletions, which we study next (Sect. 6.1).

A multifractal is formed by the union of the sets of points with given local dimension

α. The multifractal spectrum f(α) gives the dimension of the set of points with local

dimension α. It is also useful to introduce its Legendre transform τ(q) = infα [q α − f(α)],

which is the scaling exponent of q-moments. Hence, one derives the Rényi dimensions

D(q) = τ(q)/(q − 1), related to information measures. D(0) is the box-counting dimension

Db of the distribution’s support and can be identified with the maximum of f(α). A

monofractal (or unifractal) is the particular case in which the local dimension α is constant

throughout its support and, therefore, f(α) = α = D(q). In other words, a monofractal is

a uniform mass distribution on a fractal support. This uniformity implies that statistical

moments fulfill the hierarchical relation µ̄k ∼ µ̄k−1
2 (Sect. 3.1), whereas in multifractals

µ̄k ≫ µ̄k−1
2 [18].

Naturally, the notion of a void is more complicated in multifractals than in monofrac-

tals. We can actually distinguish two types of voids.

6.1 The two types of voids in a multifractal

In Sect. 5, we have defined a void as a connected open region that contains no mass.

However, this definition is, in a sense, too restrictive. Indeed, it should suffice for a point

to belong to a void that the density vanishes at it. Thus, we can define the void region

as the set of points with vanishing density. Since the density vanishes in open voids, this

definition is more general. One might think that the density can only vanish, besides in

open voids, in sets of null volume such as isolated points, curves or surfaces; but there
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are other possibilities. In a multifractal, most points can have local dimension α > 3 and,

therefore, vanishing density. Unlike the points in open voids, those points belong to the

support of the distribution and they form mass depletions inside it. Provided that the

support of a multifractal has non-vanishing volume, its mass depletions normally occupy

most of that volume.

Therefore, we can distinguish two types of voids in multifractal distributions: (i) open

empty regions, forming the complement of the distribution’s support, and (ii) mass de-

pletions formed by points with α > 3 which belong to the distribution’s support. As a

multifractal with both types of voids, let us consider a non-uniform fractal foam, for ex-

ample, the Cantor-Sierpinski carpet in Fig. 3. The totally empty squares in this figure are

fractal voids of the first type. They follow the Zipf law (5.1) with an exponent given by

the box-counting dimension Db of the distribution’s support (the Sierpinski carpet). In

this support, there are very low density regions, which are shown in light grey in Fig. 3.

In the limit of infinite iterations, the low density regions become voids of the second type,

with α > d = 2 and vanishing density.

Since voids of the first type are typical of monofractals, we regard only voids of the

second type as proper multifractal voids. Multifractals with Db < d have fractal support

and, therefore, the voids of the second type occupy vanishing volume. But these voids

become important when Db = d and there are no voids of the first type. The case Db = d

is already studied in Sect. 3.4 as the case in which the void probability function vanishes

in the continuum limit, corresponding to a non-lacunar fractal.

In this regard, we notice that the multifractal analysis of cosmological N -body simula-

tions suggests that the value of D(0) = Db is close to three [15, 16, 17]. Our recent analysis

of simulations of cold dark matter [18] or of cold dark matter plus baryons [19] confirm it.

Indeed, the supports of the distributions generated in N -body simulations seem to be their

entire regions of definition, that is to say, the distributions appear non lacunar.

Let us analyze further the structure of non-lacunar multifractals. It is easy to realize

that the geometry of proper multifractal voids is very intricate. Note that all their points

are boundary points, since these voids have no interior. Let us identify every connected

component with an individual void and assume that their number is countable, that is to

say, they can be arranged in a sequence. In spite of belonging to a scaling distribution,

these voids cannot satisfy the Zipf law (5.1), for it would imply that the total volume of the

voids
∑

R V (R) diverges (since Db = 3). On the other hand, we can have an uncountable

number of individual voids, unlike in the case of open voids. If there is an uncountable

number of voids, every individual void can have zero volume, in spite of their total volume

being positive. This happens, for example, in the mass distribution produced by the one-

dimensional adhesion model (ruled by the Burgess equation with random initial conditions)

[22].5 The cosmic web produced by the three-dimensional adhesion model [21] is a complex

multifractal [22, 23], whose geometrical features are not well understood yet.

5These properties of the voids produced by the one-dimensional adhesion model follow from the prop-

erties of the complementary mass concentrations at the shock locations: these locations form a countable

and dense set.
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One way to simplify the geometry of proper multifractal voids is to smooth the density

field, as we do in the next section. In Sect. 6.3, we consider discrete multifractal samples

and their empty spherical voids.

6.2 Voids as under-dense regions

Shandarin, Sheth & Sahni [7] and Sheth & van de Weygaert [8] define voids as under-dense

regions of a continuous density field. The former authors further require that a void be

connected. In general terms, under-dense regions are mass depletions, but they do not have

the specific meaning that we have given to mass depletions in multifractals. Moreover, a

multifractal does not define a regular density field, because the density diverges in mass

concentrations. To remove these singularities, the density field must be smoothed. For

example, it can be smoothed by using a window function or a low-pass filter of wave-

numbers. In particular, the lognormal model employed in Sect. 3 can be understood as a

coarse-grain approximation to a multifractal [41, 18]. A coarse-graining procedure is also

necessary to recover a continuous distribution from a sample of it. Thus, it is used by

Shandarin, Sheth & Sahni [7] to find voids in finite samples without having to consider the

problem of shapes discussed in Sect. 4.

Let us see how the geometry of multifractal mass depletions changes under coarse-

graining. A suitable coarse-graining process produces a continuous density field. If we

define voids as the sets of points where the density is strictly smaller than a given value,

say the average density, then the voids are open.6 Thus, multifractal mass depletions

become like the monofractal voids defined in Sect. 5, although these multifractal voids are

not empty. The entire under-dense region is also formed by a sequence of connected open

regions (individual voids). As remarked in Sect. 5, connected open region can have very

complex shapes. But their geometry is simpler than the geometry of proper multifractal

voids which we have briefly explained in the preceding section.

For example, we have computed the iso-density level corresponding to the average

density (one) of a realization in a square of a two-dimensional lognormal field with σ = 1.65

and we have plotted it in Fig. 4. The black region is the under-dense region, which can

be decomposed into a set of connected regions that constitute individual voids. A good

part of the total volume belongs to the largest void, which percolates through the square.

There are smaller voids as islets inside the matter clusters (“voids in clouds”). Unlike in

a Gaussian density field, there is no symmetry between clusters and voids: the matter

clusters contain most of the mass (80%) but occupy a small volume (20%). Thus, the

average density in the voids is small, although they are not empty.

We can imagine the geometry of voids of the second type from the extrapolation of

Fig. 4 to shrinking coarse-graining lengths: more and more matter halos pop up in the

voids and more and more voids pop up in the matter clusters. In the limit of vanishing

coarse-graining length, the halos are fully mixed with (are dense in) the voids. This picture

agrees with the result of re-simulating with higher resolution voids in N -body simulations

in Ref. [6]. Moreover, as the distribution becomes more singular, voids occupy an increasing

6They are pre-images of open sets by a continuous function and, therefore, they are open as well.
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Figure 4: Voids defined by the under-dense region of a lognormal distribution (in black).

fraction of the total volume that tends to one and contain a decreasing fraction of the total

mass that tends to zero. Despite the large volume of this type of voids, their shape is such

that no circle, however small, can fit inside them (which is equivalent to stating that they

have no interior).

6.3 Statistics of spherical voids in multifractal samples

Let us show that the statistics of the spherical voids in a finite multifractal sample provide

a good indication of the type of voids. We first consider lacunar multifractals, namely,

multifractals with fractal support or, in other words, with voids of the first type. In

finite samples of these multifractals, the size of the largest voids is hardly dependent on

the density of points n. Furthermore, the sizes of voids scale. All this follows from the

analyses in Sect. 3.4, Sect. 5 and Sect. 6.1, but it is also intuitively obvious by examining

Figs. 2 and 3.

For the study of the statistics of spherical voids in non-lacunar multifractals, we use

a random multinomial multifractal supported on the full unit square. Its correlation di-

mension is D2 = 1.526 and its homogeneity scale r0 = 1 (the edge of the unit square). We

define this multifractal with great precision, namely, with linear resolution 224 ≃ 1.7 · 107,

and we generate a random sample of it with 10000 points (the typical order of magnitude

of galaxy volume-limited samples). The spherical voids in this sample are obtained by

applying the void-finder of Sect. 4. We find some relatively large voids (see Fig. 5). The

largest void has a radius equal to 0.0484 and an area equal to 0.00736 (in box-size units).

According to the results of Sect. 2.1, the expected number of voids of at least that size, in

a sample of the uniform distribution with 10000 points and such that N = 73.6, would be

10000 (12π2/35)73.62 exp(−73.6) ≃ 2 · 10−24. Therefore, the largest void is too large for a

Poisson distribution.

But the largest void is sensibly smaller than the homogeneity scale. For this non-
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Figure 5: 10000 point sample of a random multifractal supported in the full unit square, with its

corresponding voids (top figure). Log-log plot of the rank-ordering of the void radii (bottom plot).

lacunar fractal, we can use the estimate of the largest void size based on the lognormal

distribution that is obtained in Sect. 3.3. It is also valid in two dimensions. In fact, we

have obtained precisely N = 73 for Nt = 10000 points and σ = 1. This value of σ is

slightly larger than the actual value, σ = 0.82, which can be calculated from the point

density variance at the scale of the size of the void. However, estimates obtained from

P0[V ] are always lower estimates, so we conclude that the lognormal distribution provides

a reasonable model of the largest void sizes in this multifractal.

In regard to the rank-ordering of the sequence of sizes of the spherical voids in this

multifractal sample, it does not fulfill Zipf’s law, as shown in Fig. 5. In fact, its aspect is

similar to the aspect of the plot that corresponds to a Poisson distribution (Fig. 1).

We have also tested samples of the same multifractal with larger numbers of points.

Naturally, the largest voids are smaller in larger samples. Thus, it becomes clear that

the size of the largest void bears no relation to the homogeneity scale. Furthermore, the

estimation of that size in Sect. 3.3 based on the lognormal distribution given by Eq. (3.12),

in particular, still holds in larger samples.
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7. Voids in cosmological simulations and galaxy samples

7.1 Voids in cosmological simulations

Here, we briefly study the statistics of spherical voids in data from cosmological N -body

simulations, taking into account the conclusions of multifractal analyses of cosmological

simulations [15, 16, 17, 18, 19]. We have remarked above that these analyses suggests that

the box-counting dimension of the matter distribution is Db = 3, making the fractal non-

lacunar. However, the measure of lacunarity provided by Db is rather inaccurate. Thus, it

is worthwhile to study directly the distribution of voids.

The first observation that is relevant, although somewhat trivial, is that the spherical

voids in state-of-the-art simulations, with many millions of particles, are very small in

comparison with the simulated volume and with the scale of homogeneity as well. This

observation suggests that the matter distribution is supported in the full simulated volume.

To confirm it, we can measure how the size of the largest void changes with the density

of points n. For example, we take the redshift-zero particle distribution in the GIF2

simulation, which has a relevant scaling range, up to the homogeneity scale r0 = 1/4 (in

box-size units) [18]. We extract two random samples from this particle distribution, with

Nt = 10000 and 100000 points, respectively. In the first one, the largest void has a radius

equal to 0.097 and a volume equal to 0.0038 (in box-size units). In the 100000 point sample,

the largest void has a radius equal to 0.059 and a volume equal to 0.00086. This pattern

of shrinking of the largest void is consistent with a non-lacunar multifractal.

Of course, the largest void in a small sample contains particles of any larger sample.

In general, a relevant question in the process of obtaining better samples (with larger n) is

if and how it affects voids. The process cannot alter voids of the first type significantly, but

its effect on proper multifractal voids is like the effect of a shrinking coarse-graining length

described in Sect. 6.2. Therefore, a more general and definite proof of non-lacunarity in

cosmological simulations is provided by the method of Gottlöber et al [6], consisting in

re-simulating with higher resolution voids found in N -body simulations. The result of this

method is that new structure arises inside these voids in a self similar pattern, just like a

non-lacunar fractal predicts.

7.2 Voids in galaxy samples and galaxy bias

There are many studies of the various aspects of galaxy voids. The studies that are most

relevant in our context have been carried out by Tikhonov and Karachentsev [25, 26, 27].

They study the statistics of voids in several galaxy samples and find evidences of scaling

of galaxy voids. As we have shown, scaling of voids is the hallmark of a lacunar fractal.

Here, we re-analyze Tikhonov’s data from the 2dF survey [26] in regard to the size of the

largest void and, especially, to the possible scaling of its voids.

Tikhonov [26] selects from the 2dF survey a volume limited sample (VLS) with 7219

galaxies, such that the volume per galaxy is 513 Mpc3 h−3. The largest void in it corre-

sponds to a sphere with radius 21.3 Mpc h−1 and volume 4.05 · 104 Mpc3 h−3. Thus, if

the sample belonged to a uniform distribution, the expected number of sample galaxies

in that sphere would be 79. Then, the expected number of voids of that size, according
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Figure 6: Rank-ordering of the voids in a 2dFGRS sample with 7000 galaxies (r is the void radius

in Mpc h−1). This rank-ordering is typical of non-lacunar fractals.

to Sect. 2.1, would be 7219 (12π2/35) 792 e−79 = 8 · 10−27, that is, absolutely negligible.

However, the value N = 79 is reasonable for a non-lacunar fractal, according to Sect. 3.3.

Tikhonov [26] rank-orders the void sizes in the 2dF VLS and concludes that there is

a scaling range. This scaling range is about a decade, namely, an order of magnitude in

the rank (from rank 60 to rank 600, approximately). Tikhonov uses his own void-finder,

which first fits the largest empty spheres and then applies a merging criterion (in a similar

way to El-Ad & Piran [5]). We use our void-finder (defined in Sect. 4) to just find the list

of non-overlapping spherical voids in Tikhonov’s VL sample.7 The resulting rank order is

plotted in Fig. 6. The range of radii is nearly the same range found by Tikhonov but no

scaling can be discerned. The rank order shown in Fig. 6 is similar to the ones that we

found in Ref. [24], and they all are actually typical of non-lacunar fractals; namely, they

all are similar to the rank-ordering of Poisson voids (Fig. 1), but they span longer ranges

of sizes.

Actually, the analyses of voids that attempt to find the Zipf law have been motivated

by the assumption of a lacunar fractal distribution of galaxies. We must reconsider this

assumption, in regard to the evidences of a multifractal distribution of (dark) matter with

Db = 3 [18, 19] and the results of the preceding section. Indeed, a galaxy distribution

that closely follows the full matter distribution is probably also non-lacunar. To actually

determine the type of galaxy voids, we need to model the galaxy biasing.

Dark matter concentrations (halos) are the natural places for galaxy formation. These

concentrations have been studied as peaks of a Gaussian density field [28]. In contrast,

our model of galaxy biasing stems from the definition of halos as over-dense regions of a

coarse-grain multifractal density field in Sect. 6.2. As emphasized there, this type of density

field is very different from a Gaussian field on nonlinear scales. The main difference is the

strong asymmetry between over-dense and under-dense regions: the former occupy a small

volume but contain most of the mass. Therefore, we do not need a high density threshold

7Actually, we have removed a few galaxies from one boundary to make it straight, thus making the

geometrical shape of the sample rectangular (in the angular coordinates). Furthermore, we have shifted

slightly the position of the straightened edge in order to have a round number of galaxies in the sample,

namely, 7000 (out of the initial 7219).
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to define clustered mass concentrations, but just the average density. We can assign a

galaxy to every coarse-grain mass concentration (halo), obtaining a clustered distribution

with a minimal bias.

The average density corresponds to the local dimension α = 3, which separates mass

concentrations (α < 3) from mass depletions (α > 3). Naturally, we can set a higher

density threshold to differentiate one highly clustered and luminous population of galaxies

(“wall galaxies”) from another more homogeneous and less luminous population (“field

galaxies”). A natural choice of threshold should be the density that corresponds to the

local dimension α1 of the mass concentrate [18], because halos with smaller densities contain

relatively little mass. Notice the analogy with the procedure of El-Ad & Piran [5] in the

“wall builder” phase of their void-finder.8 With this prescription, the voids in the “wall

galaxies” contain “field galaxies”. However, the distribution of these “field galaxies” is not

homogeneous and they tend to avoid the central parts of voids. The most homogeneous

halo subpopulation consists of halos with α close to three, with so little gas that it may

not form galaxies. Peebles [30] discusses the nature of void objects and argues that the

formation of observable objects is suppressed in voids, to the extent that it may constitute

a challenge to our current structure formation paradigm. However, Furlanetto & Piran

[50] use an excursion set model and conclude that the size of voids diminishes with the

galaxy luminosities in reasonable agreement with observations. Our multifractal model is

in accord with this conclusion.

8. Summary and Conclusions

We have developed statistical methods for the study of cosmic voids and we have applied

them to various distributions of observable objects. The method of choice depends crucially

on the number density n of objects. If the density is sufficiently small for having a small

number of objects in a volume in which the Universe is homogeneous, then the objects

are weakly correlated and the analysis for Poisson voids in Sect. 2 is relevant. Of course,

this case is the most amenable to analytical methods. We have found the distribution of

spherical voids and the volume of the largest void, and we have shown how to generalize

these results to more general shapes of voids. Not surprisingly, to observe a really large

void, namely, with volume V ≫ 1/n, one needs an exponentially large sample, with a

number of objects Nt ∼ enV . And this sample could only come from surveying volumes

exponentially larger than the homogeneity volume.

The conclusion is that the voids observed in galaxy surveys, for example, are not

due to Poissonian fluctuations. Indeed, galaxy samples have had for long time number

densities such that there are many galaxies in a homogeneity volume. The objects inside

a homogeneity volume have correlations, which are necessary for the existence of voids

but make the application of analytical methods more difficult. For still moderate n, an

8Indeed, the relation between an α-threshold and their procedure is quite close. Since α(x) measures

the concentration of mass around x, the mass in the ball of radius r centered on x is m[B(x, r)] ∼ rα(x).

A discrete measure of m[B(x, r)] is given by the number of points inside B(x, r). A threshold for α sets a

threshold for this number, as El-Ad & Piran do.
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expansion in powers of n yields general results and, in particular, yields a formula for the

distribution of voids, although the computations are hardly feasible. It is preferable to

resort to significant models that are valid for any n. We have focused on a hierarchical

Poisson model and on the lognormal model, which illustrate two different behaviors of the

largest voids.

We define the hierarchical Poisson model by restricting the support of a Poisson dis-

tribution to random clusters. Thus, we construct a point distribution that saturates the

general moment inequality µ̄k ≥ µ̄k−1
2 . When µ̄2 ≫ 1, the clusters are small and the dis-

tribution is strongly correlated, but then its large voids are just the voids in the random

distribution of clusters. These voids are independent of the magnitude of the density of

objects inside clusters. Therefore, the distribution of the volume of the largest void is

of Fréchet-Pareto type, in contrast with the pure Poisson case, in which the largest void

vanishes when n → ∞ (Gumbel type).

It is natural to understand the hierarchical Poisson model as a real hierarchy of clusters

of clusters in a self-similar pattern. Thus, it becomes a fractal model with hierarchical and

scaling correlation functions. For example, one-dimensional Lévy flights are constructed so

as to have scaling voids that follow the Pareto distribution. In contrast, the study of voids

in higher-dimensional fractals demands a good deal of geometry. A convenient approach

to fractal voids is the construction of cut-out fractals. In particular, a fractal foam is a

possible model of the sheet structure of the cosmic web. Fractal foams have voids with

simple shapes and scaling sizes. These properties of voids can be generalized to other

monofractal distributions.

A monofractal distribution is characterized by its box-counting dimension Db and is

essentially uniform throughout its support, like the hierarchical Poisson model. However,

the adhesive gravitational dynamics gives rise to non-uniform distributions that contain

filaments and nodes, in addition to sheets. This motivates us to consider non-uniform

fractal foam models and, ultimately, multifractal models of the cosmic web. A multifractal

is characterized by a spectrum of dimensions, but its box-counting dimension still plays

the most significant role in regard to voids. If Db < 3, then the support of the multifractal

has vanishing volume, namely, is itself a fractal set. Therefore, the distribution of voids is

independent of the non-uniformity of the matter distribution inside its support. A more

interesting type of multifractal voids arises in the case that Db = 3 and the support is the

total volume.

Multifractals with support in a full volume have been called non-lacunar fractals by

Mandelbrot [10]. Whether or not non-lacunar fractals have voids is a subtle question.

Certainly, they have no voids with empty interior in which one can fit an empty sphere.

However, they do have sets of mass depletions with large volumes in which the density

vanishes. We have called them voids of second type. The lognormal model provides us

with a good description of the statistics of this type of voids as they appear in a multifractal

sample with number density n. We deduce, for example, that the volume of the largest

spherical void is much larger than in a Poisson distribution but is still small in comparison

with the homogeneity scale (its distribution is actually of Gumbel type). On the other

hand, these voids do not have scaling sizes. A more geometrical picture of this type of
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voids is achieved by representing them as under-dense regions of a smoothed density field

(Sect. 6.2). Thus, second type voids become geometrically similar to first type voids,

although they necessarily contain mass. This mass is part of self-similar structures that

can be observed as the smoothing length shrinks and the resolution increases.

Indeed, it has been observed by Gottlöber et al [6] in cosmological N -body simulations

that a pattern of self-similar structure arises inside voids when the resolution increases.

Further statistical evidence supports that the voids in cosmological simulations belong to

a non-lacunar fractal (Sect. 7.1). Therefore, we can assert that dark matter voids are well

described as second type voids in a non-lacunar fractal.

It is less certain that a similar description is appropriate for galaxy voids. Admitting

that the distribution of galaxies is fractal in the relevant range of scales, we have examined

the observational and theoretical arguments for lacunarity. Scaling of galaxy voids implies

lacunarity. We have not found this scaling, neither in Ref. [24] nor in Sect. 7.2, in spite

of the favorable results of Tikhonov and Karachentsev [25, 26, 27]. Another argument

for lacunarity is the emptiness of voids. Peebles argues that the formation of observable

objects is suppressed in voids [30]. But it rather seems that the size of voids diminishes with

the galaxy luminosities [50]. This is also predicted by a non-lacunar multifractal model of

galaxy bias in which the mass (or luminosity) of galaxies is ruled by the local dimension

as a measure of mass concentration (Sect. 7.2). However, very weak concentrations may

not form galaxies and remain inside voids as dark matter halos. This might produce a low

lacunarity in the distribution of galaxies.

As regards the formation of voids, we have introduced multifractal models of the

adhesion-like dynamics that gives rise to the cosmic web. However, to obtain non-lacunar

foams, we must modify slightly the construction introduced in Sect. 5.2; namely, we must

require that the initial under-dense regions become depleted but not empty. This is nec-

essary to obtain the proper cosmic web structure. However, the construction of a realistic

model of the formation of voids along these lines is beyond the scope of this work.

In conclusion, a good description of cosmic voids and, in general, the structure of

matter is provided by a non-lacunar multifractal, with dimension Db = 3 (the dimension

of non-fractal distributions) and without empty voids (first-type voids). The distribution

of galaxies is probably non-lacunar as well, but it could have a low lacunarity. The peculiar

structure of non-lacunar fractals can be partly responsible for the controversy about the

application of fractal geometry to the distribution of galaxies. Indeed, that structure is

very different from the structure of monofractals (or multifractals with Db < 3) that has

been normally assumed for the distribution of galaxies.
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A. The four point integral

To prove Eq. (2.1) and evaluate the function f therein and its integral, we need the explicit

expression of the change of Cartesian coordinates to coordinates adapted to the sphere

defined by the four points. We first express each point as the sum

xi = xc + rui ,

where xc is the center of the sphere, r is its radius and, therefore, the vectors ui are unitary;

namely,

ui = (sin θi cos φi, sin θi sin φi, cos θi),

in standard spherical coordinates. The transformation of the twelve coordinates {(x1
i , x

2
i , x

3
i )}4

i=1

to the twelve coordinates {(x1
c , x

2
c , x

3
c), r, {θi}4

i=1}, where θi = (θi, φi), introduces the Jaco-

bian matrix of the transformation. For elementary reasons of symmetry, the transformation

of the four point volume element can be expressed as

d3x1 d3x2 d3x3 d3x4 = d3xc r8dr g(θ1,θ2,θ3,θ4) d2
θ1 d2

θ2 d2
θ3 d2

θ4,

where d2
θ = sin θ dθ dφ is the surface element on the unit sphere and g is an unknown

symmetric function. Therefore, the calculation of the Jacobian determinant is reduced to

the calculation of this function.

The expansion of the Jacobian determinant produces 12! = 479001600 terms. Al-

though the Jacobian matrix has many vanishing terms, the number of non-vanishing terms

in the expansion of its determinant is huge nonetheless and a direct calculation is awkward.

It is convenient to use the formalism of exterior algebra, which provides a suitable way to

organize the calculation. We begin with writing

dxa
i = dxa

c + ua
i dr + rdua

i ,

and, then, we can calculate the one-point volume element as the wedge product

dx1
i ∧ dx2

i ∧ dx3
i = dx1

c ∧ dx2
c ∧ dx3

c + · · · + r2 dr ∧ d2
θi ,

where the dots stand for the eighteen remaining terms. The total number of terms is the

number of triplets of the six coordinates {(x1
c , x

2
c , x

3
c), r,θi} with no repeated coordinates,

namely, C6
3 = 20.

The wedge product ∧4
i=1(dx1

i ∧ dx2
i ∧ dx3

i ) could give rise to many terms, but most

terms in the one-point volume element do not contribute to it: for example, we can deduce

from the structure of the final result that, in the volume element of index i, only the terms

proportional to d2
θi can contribute. We note that the four-point wedge product is oriented

and one must take its absolute value for the function g to be positive and symmetric. After

a lengthy calculation, one obtains

g(θ1,θ2,θ3,θ4) =

|C (θ3) C (φ2) S (θ1)S (θ2)S (φ1) − C (θ4)C (φ2)S (θ1) S (θ2) S (φ1) −
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C (θ2) C (φ3) S (θ1)S (θ3)S (φ1) + C (θ4)C (φ3)S (θ1) S (θ3) S (φ1) +

C (θ2) C (φ4) S (θ1)S (θ4)S (φ1) − C (θ3)C (φ4)S (θ1) S (θ4) S (φ1) −
C (θ3) C (φ1) S (θ1)S (θ2)S (φ2) + C (θ4)C (φ1)S (θ1) S (θ2) S (φ2) +

C (θ1) C (φ3) S (θ2)S (θ3)S (φ2) − C (θ4)C (φ3)S (θ2) S (θ3) S (φ2) −
C (θ1) C (φ4) S (θ2)S (θ4)S (φ2) + C (θ3)C (φ4)S (θ2) S (θ4) S (φ2) +

C (θ2) C (φ1) S (θ1)S (θ3)S (φ3) − C (θ4)C (φ1)S (θ1) S (θ3) S (φ3) −
C (θ1) C (φ2) S (θ2)S (θ3)S (φ3) + C (θ4)C (φ2)S (θ2) S (θ3) S (φ3) +

C (θ1) C (φ4) S (θ3)S (θ4)S (φ3) − C (θ2)C (φ4)S (θ3) S (θ4) S (φ3) −
C (θ2) C (φ1) S (θ1)S (θ4)S (φ4) + C (θ3)C (φ1)S (θ1) S (θ4) S (φ4) +

C (θ1) C (φ2) S (θ2)S (θ4)S (φ4) − C (θ3)C (φ2)S (θ2) S (θ4) S (φ4) −
C (θ1) C (φ3)S (θ3)S (θ4)S (φ4) + C (θ2)C (φ3)S (θ3) S (θ4) S (φ4) | ,

where C = cos and S = sin. The integral over the angles is simplified by taking into

account the permutation symmetry. It yields

∫

g(θ1,θ2,θ3,θ4) d2
θ1 d2

θ2 d2
θ3 d2

θ4 = 4!
256π5

105
.

Finally, we can substitute the radius r by the volume V = 4πr3/3, using V 2dV =

(4π/3)33r8dr. Therefore, the function f defined in Eq. (2.1) is

f =
32

43π3
g,

and its integral is

∫

f(θ1,θ2,θ3,θ4) d2
θ1 d2

θ2 d2
θ3 d2

θ4 = 4!
12π2

35
.

B. Asymptotic expansions of the lognormal P0[V ]

Here we obtain the asymptotic expansions as σ → ∞ or N → ∞ of the integral in Eq. (3.6),

namely,
∞

∫

0

exp

[

−(ln r + σ2/2)2

2σ2
− Nr

]

dr

r
.

An inspection shows that this integral is awkward for the standard methods of asymptotic

expansion of Laplace integrals, based on Watson’s lemma and its generalizations [51]. Thus,

we first transform the integral, using the following identity:

exp

[

−(ln r + σ2/2)2

2σ2

]

=

σ√
2π

∞
∫

−∞

dz exp

[

−σ2z2

2
+ i

(

ln r +
σ2

2

)

z

]

– 33 –



Thus,

∞
∫

0

exp

[

−(ln r + σ2/2)2

2σ2
− Nr

]

dr

r
=

σ√
2π

∞
∫

−∞

dz exp

[

−σ2z2

2
+ i

σ2

2
z

]

∞
∫

0

dr

r
e−Nrriz =

σ√
2π

∞
∫

−∞

dz exp

[

−σ2z2

2
+ i

σ2

2
z

]

N−iz Γ(iz), (B.1)

where the change of integration order is valid if the integrals are convergent. For the

integral over r to be convergent, we need that Re(iz) = − Im(z) > 0.

To obtain the asymptotic expansion as σ → ∞, it is convenient to choose Im(z) = 1/2

in the integral (B.1), namely, to define z = ζ + i/2 with ζ real, for it removes the linear

term in the exponential. In translating the integral (B.1) from Im(z) < 0 to Im(z) = 1/2,

we pick up the residue at z = 0 of the integrand (from the Gamma function):

−i+∞
∫

−i−∞

dz exp

[

−σ2z2

2
+ i

σ2

2
z

]

N−iz Γ(iz) =

2π + e−σ2/8N1/2

∞
∫

−∞

dζ exp

[

−σ2ζ2

2

]

N−iζ Γ

(

iζ − 1

2

)

This integral is suitable for standard methods of asymptotic expansion of general Laplace

integrals [51]. They yield

∞
∫

−∞

dζ exp

[

−σ2ζ2

2

]

N−iζ Γ

(

iζ − 1

2

)

=

√
2π

σ

(

f(0) +
1

2σ2
f ′′(0) + · · ·

)

,

where f(ζ) = N−iζ Γ (iζ − 1/2). For the first term, we only need f(0) = Γ(−1/2) = −2
√

π.

To obtain the asymptotic expansion as N → ∞, we write the integral (B.1) as

−i+∞
∫

−i−∞

dz exp

[

−σ2z2

2
+

(

σ2

2
− ln N

)

iz

]

Γ(iz) ,

and find the stationary point of the exponent, which occurs at

z =

(

1

2
− lnN

σ2

)

i.

Let us call λ = ln N/σ2 − 1/2 and make the change of variable z = ζ − iλ with ζ real.

Thus, Im(z) = −λ < 0 if λ > 0, that is, if ln N > σ2/2, which is fulfilled in the N → ∞
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asymptotics. Therefore,

−i+∞
∫

−i−∞

dz exp

[

−σ2z2

2
+

(

σ2

2
− ln N

)

iz

]

Γ(iz) =

e−σ2λ2/2

∞
∫

−∞

dζ e−σ2ζ2/2 Γ(λ + iζ)

The asymptotic expansion as λ → ∞ of the last integral is straightforward, for it requires

only the standard asymptotic expansion of the Gamma function. After some lengthy

algebra, it yields

∞
∫

−∞

dζ e−σ2ζ2/2 Γ(λ + iζ) = Γ(λ)

√
2π

σ
exp

[

−(ln λ)2

2σ2

] [

1 + O

(

ln2λ

λ

)]

.

Hence,

−i+∞
∫

−i−∞

dz exp

[

−σ2z2

2
+

(

σ2

2
− ln N

)

iz

]

Γ(iz) ≈

2πσ

ln N
exp

{

− ln2N

2σ2
+

ln N

2σ2

[

2 ln

(

lnN

σ2

)

+ σ2 − 2

]

− 1

2σ2
ln2

(

ln N

σ2

)

− σ2

8

}

.

C. The probability of voids in a Lévy flight

Lévy flights are analogous to Brownian random walks, but they are based on the Lévy stable

distributions rather than on the normal distribution. Unlike this distribution, the Lévy

stable distributions do not have finite variance and, in particular, the Lévy distributions

that we consider here do not have finite mean. These distributions are defined for positive x

only and they have a probability function P (x) with power-law asymptotic form C/xD+1,

where C > 0 and 0 < D < 1. Every Lévy distribution is characterised by these two

parameters and we can substitute the amplitude C by a scaling parameter t such that

the probability density Pt(x) = t−1/DP1(t
−1/Dx). The explicit expression of Pt(x) is only

known for a few values of D, chiefly, D = 1/2, with Pt(x) = (t/
√

π) exp(−t2/x)/x3/2.

The cumulative probability of a Lévy distribution is just a function of t−1/Dx, namely,

P>(t−1/Dx), with the parameter D only, due to the scaling property of Pt(x). In a Lévy

flight x(t) with dimension D, the increment x(t) − x(s) has a Lévy distribution with

parameters D and t − s.

Brownian random walks are continuous but Lévy flights have jumps (hence their name).

Mandelbrot [10] studies Lévy flight jumps and discusses its power-law distribution, namely,

P>[L] ∝ L−D. He points out that P>[L] is ill-defined as L → 0 and explains that it must be

understood as the cumulative conditional probability P[L > l|L > λ] = (λ/l)D . However,

he does not include a proof of this very plausible equation. We include here a simple proof

and a brief discussion, for the sake of completeness.
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In general, we have that

P[L > l|L > λ] =
P>(l)

P>(λ)
, (C.1)

where l > λ and P> is the cumulative probability of a jump in the Lévy flight at an arbitrary

time s (we can take s = 0). Therefore, P> is the cumulative probability P> of a Lévy

distribution with parameters D and t in the limit t → 0. Naturally, limt→0 P>(t−1/Dx) = 0,

but the quotient in Eq. (C.1) can be finite and non-vanishing. We can evaluate the limit

with l’Hôpital’s rule:

P[L > l|L > λ] = lim
t→0

P>(t−1/Dl)

P>(t−1/Dλ)
= lim

t→0

dP>(t−1/Dl)/dt

dP>(t−1/Dλ)/dt
=

lim
t→0

P (t−1/Dl) t−1/D−1l

P (t−1/Dλ) t−1/D−1λ
= lim

t→0

(t−1/Dl)−D−1t−1/D−1l

(t−1/Dλ)−D−1t−1/D−1λ
=

λD

lD
. (C.2)

Note that we need, in this calculation, only the power-law asymptotic behavior of the Lévy

distributions, regardless of the values of λ or l.

From the cumulative conditional probability, we can obtain the conditional probability

density:

P[L|L > λ] = − d

dl
P[L > l|L > λ]

∣

∣

∣

∣

l=L

=
DλD

LD+1
. (C.3)

This is the quantity used in Sect. 3.4 (with the subscript 0). The found distribution appears

in various contexts and is often called the Pareto distribution of parameter λ.

It is worthwhile to remark on the fact that the unconditioned probability of jumps

P>(l) = limt→0 P>(t−1/Dx) = 0 vanishes. The reason is technical. Let us assume that the

Lévy flight x(t) is defined in the interval 0 ≤ t ≤ 1. The times at which the jumps take

place form a set that is dense in [0, 1] (because of its statistical self-similarity) but that is

countable and, therefore, has null measure in [0, 1].

The probability of voids given by the Pareto law, Eq. (C.3), suggests a simple way of

generating a discrete Lévy flight x(t), with t = 0, 1, 2, . . ., say. We can take x(0) = 0 and

successively add to it independent values of a random variable with the Pareto distribution.

Thus, the distribution of voids is exact, namely, it coincides with the distribution in a

continuous Lévy flight, under the condition that every void is longer than λ. However, the

distribution of points does not reproduce exactly the corresponding Lévy distribution, but

it approaches it in the long run. Indeed, the discrete Lévy flight approaches the continuous

Lévy flight as the number of points grows, after a rescaling of t. This way of generating

Lévy flights, mentioned in Sect. 3.4, is very convenient because it does not directly involve

Lévy distributions, which are not available in analytic form (except in a few cases).
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